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INTRODUCTION

Numerical calculation methods for multi-dimensional recirculating flow have

been developed over the last 15-20 years. As a result, it has become possible to

predict complex flows and heat transfer in combustion chambers, gas turbines, rota-

ting machinery, heat exchangers, and many other practical devices. As the predictive

methods havebecome more powerful, the researchers and designers have applied them to

even more challenging problems. Although the computational prediction is far less

expensive than the full-scale testing of the equipment, the cost of computational run

fora complex problem is still quite substantial. Therefore, attempts are continu"

ally being made for improving the accuracy and efficiency of numerical techniques so

that the predictions of a given accuracy can be obtained at a modest cost.
(

A crucial consideration in the calculation of fluid flow is the treatment of the

coupling between the velocity components and pressure as expressed by the momentum

and continuity equations. A very widely used method for the coupled solution is

SIMPLE. Also, its many variants have been developed in recent years. These methods

provide an iterative scheme in which the momentum equations are sequentially solved

and the pressure is obtained from a special equation derived from the continuity

equation. Although the methods are on the whole satisfactory, they do exhibit, on

occasion, slow convergence, divergence, and sensitivity to under-relaxation factors.

The aim of the present research program is the development of more efficient and

reliable calculation schemes for the coupled momentum and continuity equations. The

resulting schemes would significantly reduce the expense of computing complex flows

such as those in combustion chambers, gas turbines, and heat exchangers.

METHODS CHOSEN FOR STUDY

It is first realized that the coupling between the momentum and continuity equa-

tions is best handled by a simultaneous solution of their (linearized) discrete

forms. For a flow at a very small Reynolds number, for which the equations are truly

linear, such a direct method gives the solution instantly, without the need for iter-

ations. For nonlinear problems, however, the direct solution of the linearized equa-

tions must be repeated many times until convergence is reached. The following

methods are currently being investigated for the handling of the nonlinearity.

(i) Successive substitution

At any given iteration, the nonlinear eofficients are calculated simply from

the values available from the previous iteration.

(ii) Newton-Raphson method

The nonlinear terms in the discrete equations are differentiated with respect to

the unknowns. Thus, the new solution is obtained as a Newton-Raphson extrapola-

tion along the derivatives evaluated at the previous iteration. In general,

this method requires the evaluation of a large number of cross derivations. The

storage requirements are also correspondingly high.

*Work done under NASAGrant NAS3-596.
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(iii)

(iv)

The Broyden method

The expense of computing the many derivatives in the Newton-Raphson method can

be reduced by employing the Broyden method described in references 1-5. The

essence of the Broyden method is that the inverse of the Jacobian matrix is re-

placed by a suitable approximation. At each iteration, this approximate inverse

is updated so as to promote convergence.

Norm minimization methods

The changes in the dependent variables predicted by the successive-substitution

or Newton-Raphson methods do not always lead to convergence. Therefore, under-

relaxation may be necessary. Instead of employing the underrelaxation in an

arbitrary manner, the norm minimization methods seek an optimum underrelaxation
so that the norm of the residual vector would be minimized.

TESTING OF THE METHODS

The above-mentioned methods are being applied to a number of two-dimensional

problems such as the flow in a driven cavity, a sudden expansion in a duct, and the

natural convection in an enclosure. The early indication is that these direct

methods perform very well. Especially with methods (ii), (iii), and (iv), it has

been possible to obtain solutions to highly nonlinear problems within a few (10-20)

iterations. Methods like SIMPLE require about 500 iterations for the same problems.
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